- 1. (2.5 pts) A 100 mW laser beam with wavelength $\lambda = 6328$ Å is focused onto a GaAs sample that is 0.5 μ m thick. The absorption coefficient at this wavelength is 3×10^4 cm⁻¹, the bandgap is $E_g = 1.42$ eV at 300 K, and $m_e^* = 0.067 m_o$.
 - a) Find the number of photons emitted per second by radiative recombination in the GaAs, assuming perfect quantum efficiency.
 - b) What is the power delivered to the sample as heat?
- 2. (1.5 pts) An aluminum layer having the work function $q\phi_m = 4.1$ eV is deposited onto a SiC substrate. SiC has an electron affinity of 3.9 eV and a bandgap of 3.0 eV and its effective density of states at room temperature of $N_C = N_V = 2.51 \times 10^{19}$ cm⁻³. Determine the doping type and carrier density so that the work function of the SiC matches the Al layer at room temperature.

q	$1.6 imes 10^{-19} \mathrm{C}$	electron charge
ϵ_{o}	$8.85 imes10^{-14}~\mathrm{F/cm}$	permittivity of free space
K_s	11.8 (Si)	relative dielectric constant
Ko	3.9 (SiO ₂)	relative dielectric constant
k_B	$8.617 imes10^{-5}~{ m eV/K}$	Boltzman's constant
h	$6.63 imes 10^{-34} \text{ J} \text{ s}$	Planck constant
m_o	$9.11 imes 10^{-31} ext{ kg}$	electron mass
k_BT/q	0.0259 V at 300 K	thermal voltage
С	$3 \times 10^8 \text{ m/s}$	speed of light